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ABSTRACT

An assessment of the plasticity-induced crack-closure concept is made, in light of

some of the questions that have been raised on the validity of the concept, and the

assumptions that have been made concerning crack-tip damage below the crack-opening

stress. The impact of using other crack-tip parameters, such as the cyclic crack-tip

displacement, to model crack-growth rate behavior was studied. Crack-growth simulations,

using a crack-closure model, showed a close relation between traditional AK_ff and the

cyclic crack-tip displacement (A_Se_) for an aluminum alloy and a steel. Evaluations of the

cyclic hysteresis energy demonstrated that the cyclic plastic damage below the crack-

opening stress was negligible in the Pads crack-growth regime. Some of the standard and

newly proposed remote measurement methods to determine the "effective" crack-tip driving

parameter were evaluated on middle-crack tension specimens. A potential source of the

Kmaxeffect on crack-growth rates was studied on an aluminum alloy. Results showed that

the ratio of Kmax to Kc had a strong effect on crack-growth rates at high stress ratios and at

low stress ratios for very high stress levels. The crack-closure concept and the traditional

crack-growth rate equations were able to correlate and predict crack-growth rates under

these extreme conditions.

INTRODUCTION

In 1968, Elber observed that fatigue-crack surfaces contact each other even during

tension-tension cyclic loading and he subsequently developed the crack-closure concept [1 ].

This observation and the explanation of crack-closure behavior revolutionized the damage-

tolerance analyses and began to rationally explain many crack-growth characteristics, such

as crack-growth retardation and acceleration. Since the discovery of plasticity-induced

fatigue-crack closure, several other closure mechanisms have been identified, such as



roughness- [2] and oxide-induced [3] closure, which appear to be more relevant in the near-

threshold regime. Recently, some researchers have questioned the validity of the crack-

closure concept [4,5] and whether crack-tip damage occurs below the crack-opening stress

[6,7]. Other measurement methods, from remote load-displacement records, are being

proposed [6,7] to define an "effective" crack-tip damage parameter, other than the

traditional effective stress-intensity factor range, AKeff. In addition, Kmax-COnstant testing

at extreme values (greater than 0.75 Kc) have produced very high crack-growth rates at

extremely small values of AK [8]. Testing at high stress ratios, in the absence of crack

closure, are producing different crack-growth rates at the same applied AK (or AKeff) value

[9].

The objective of this paper is to make an assessment of the crack-closure concept, in

light of some of these questions and assumptions. The paper will study the impact of using

other crack-tip parameters, such as the cyclic crack-tip displacement A_Seff [ 10,11 ], or the

cyclic crack-tip hysteresis energy WPeff [12], to model crack-growth rate behavior and to

assess the differences induced by using the AKeff parameter. The A_ef f and WPeff

parameters are directly relatable to the effective cyclic J-integral [13]. Crack-growth

simulations, using the modified Dugdale [14] crack-closure model [15,16], will be

conducted over a wide range in stress ratios (R) to asses_ the impact of using cyclic crack-

tip displacement as a crack-tip parameter. Some of the standard and newly proposed

remote measurement methods to determine traditional crack-opening stresses or "effective"

crack-driving parameters will be evaluated from the plasl icity-induced crack-closure model

analyses on middle-crack tension specimens. Analyses xvill be conducted under both

constant-amplitude and single-spike-overload conditions A potential source of the Kmax

effects on crack-growth rate data will be studied at high _tress ratios and at high stress

levels on test data from an aluminum alloy.

PLASTICITY-INDUCED CRACK CI,OSURE MODEL

The plasticity-induced crack-closure model, showr in Figure 1, was developed for a

through crack in a finite-width plate subjected to remote applied stress. The model was

based on the Dugdale strip-yield model [ 14] but modified to leave plastically deformed



material in the wake of the crack. The details of the model are given elsewhere and will not

be presented here (see Newman [15,16]). One of the most important features of the model

is the ability to model three-dimensional constraint effects. A constraint factor, ct, is used to

elevate the flow stress (t_o) at the crack tip to account for the influence of stress state (O_Co)

on plastic-zone sizes and crack-surface displacements. (The flow stress Oo is taken as the

average between the yield stress Oys and ultimate tensile strength Ou of the material.) For

plane-stress conditions, ct is equal to unity (original Dugdale model); and for simulated

plane-strain conditions, 0_ is equal to 3. Although the strip-yield model does not model the

correct yield-zone shape for plane-strain conditions, the model with a high constraint factor

is able to produce crack-surface displacements and crack-opening stresses quite similar to

those calculated from three-dimensional, elastic-plastic, finite-element analyses of crack

growth and closure for finite-thickness plates [17].
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Figure 1. Schematic of strip-yield model at maximum and minimum applied loading.



Thecalculationsperformedhereinweremadewith FASTRANVersion3.0. The

modificationsmadeto FASTRAN-II (Version2.0describedin reference16)weremadeto

improvethecrack-openingstresscalculationsundervariable-amplitudeloading,to improve

theelement"lumping"procedureto maintaintheresidualplasticdeformationhistory,andto

improvecomputationalefficiency.Fromthemodel,thecrack-mouthopeningdisplacements

(CMOD)arecalculatedatthecenterlineof themodel(x = 0). Thecyclic crack-tip

displacementsandthecyclichysteresisenergywerecalculatedfrom thecrack-tipelement(j

= 1) inFigure1(b). Thecrack-openingstress,So,iscalculatedfrom thecontactstresses

shownin Figure1(b), seereferences15or 16,by equatingtheappliedstress-intensityfactor

at Soto thestress-intensityfactorcausedby thecontactstresses.CMOD resultsunder

cyclic loadingwereusedto determinethecrack-openingstressesusingthereduced-

displacementor thecompliance-offsetmethods,andanalternativeeffectivestress-intensity

factorrangefrom theadjusted-compliance-ratiomethod[7].

EFFECTIVE STRESS-INTENSITY FACTOR RANGE AGAINST CRACK-GROWTH

RATE RELATIONS

The linear-elastic effective stress-intensity factor range developed by Elber [1] is

AKeff = (S_, - So) F "4(_c) (1)

where Smax is the maximum stress, So is the crack-open_lg stress and F is the boundary-

correction factor. The crack-growth rate equation proposed by Elber states that the crack-

growth rate is a power function of the effective stress-inlensity factor range (like the Paris

equation), as shown by the dotted line in Figure 2. However, fatigue crack-growth rate

data plotted against the AK or AKeff, commonly show a "sigmoidal" shape, as illustrated by

the solid curve shown in Figure 2. To account for this shape, the power relation was

modified by Newman [15] to

dc/dN = C (AKeff) n G / H (2)

where G = 1 - (AKo/AKeff) p and H = 1 - (Kmax/C5) q. The function G accounts for

threshold variations with stress ratio (AKo is a function c_f stress ratio) and the function H

accounts for the rapid crack-growth rates approaching fiacture. The parameter C5 is the
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cyclic fracture toughness. As cracked specimens are cycled to failure, the fracture

toughness is generally higher than the toughness for cracks grown at a low load and then

pulled to failure. This is caused by the shielding effect oftbe plastic wake [18]. The cyclic

fracture toughness (C5), like the elastic fracture toughness (KIe), is a function of crack

length, specimen width, and specimen type. Nonlinear fracture mechanics methods, in

general, are required to model the fracture process. Later, a two-parameter fracture

criterion will be used to model the fracture process. A discussion of the threshold behavior

is beyond the scope of the present paper. Thus, G is set to unity. Only the function H will

be considered in the present analyses to account for non-closure induced Kma x effects.

dc

dN

dc/dN=C z_nff G_ / ..""

°° .. ,o,"°"°°"°

/H= 1 - (Kmax/Kc)q

7 "=" K c = f( c, w)

dc/dN = C __/L_._ff / /

_..-_ G = 1 - (AK o/AKeff)P

/ AK o = f(R)

/

z_ eft

Figure 2. Schematic of effective stress-intensity factor against crack-growth rate relations

showing influence of threshold and fracture toughness.

CYCLIC HYSTERESIS ENERGY AND CYCLIC CTOD EVALUATIONS

In order to make an assess of the cyclic crack-tip damage for stresses below the traditional

crack-opening stress, the cyclic plastic crack-tip displacements from the crack-tip element (j = 1)

in Figure 1(b) was calculated for middle-crack tension M(T) specimens subjected to various



constant-amplitude loading conditions. The simulations we re made on both 2024-T3 aluminum

alloy and 4340 steel specimens. Some typical results on the aluminum alloy are shown in Figure

3. Here a constraint factor ot - 2 (near plane-strain conditions) was applicable at low crack-

growth rates. This figure shows the applied stress plotted against the plastic crack-tip

displacement for loading and unloading (no crack growth was allowed in the model during this

load cycle). These results are quite similar to the remarkable experimental measurements made

by Bichler and Pippan [19] on near crack-tip cyclic deforn_Ltions. The solid symbol on the

loading curve shows the crack-opening stress (So) and the an'row indicates the closure stress (Sc)

during unloading. The traditional effective stress range, ASeff was calculated from the difference

between Smax and So. The effective cyclic crack-tip displacement (A_eff) is given by the

difference between the maximum and minimum plastic displacements. The total cyclic crack-tip

hysteresis energy WPeff was given by the area between the loading and unloading curves. The

cross-hatched region is the cyclic
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Figure 3. Calculated cyclic plastic crack-tip deformations under constant-amplitude loading.
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plastic deformations that occur at applied stresses below the crack-opening stress. Thus, there is

cyclic plasticity below the crack-opening stress. However, the cross-hatched area is a small

percentage of the total (here it is only about 3.5 percent of the total area). For large-scale

yielding conditions, the cross-hatched area becomes a larger percentage of the total, but here

nonlinear fracture-mechanics parameters, such as A.left, are needed to correlate crack-growth-

rate data. However, for the Paris crack-growth regime, the effects of cyclic plasticity below the

crack-opening stress on crack-growth rates is small and can be neglected. For the calculations

made on the aluminum alloy and steel, the influence of cyclic plasticity below the opening load

on crack-growth rates was estimated to be less than about 5 percent, assuming that crack-

growth rates are nearly linearly related to the cyclic hysteresis energy.

The concept of using cyclic crack-tip displacements to characterize crack-growth rate

behavior has been applied for many years (see Weertman [10] and Tomkins [11]). It is thought

that the cyclic crack-tip displacement is a more fundamental parameter to characterize crack-tip

damage. To evaluate the differences induced by using the traditional AKeff concept, crack-

growth simulations were made on aluminum alloy and steel specimens assuming that the material

behaves under a simple power-law relation in terms of AKefr. The crack-growth constants for

the two materials are given in Figure 4. The n-power on the aluminum alloy was 4 and the steel

was 2. The respective constraint factors (0c = 2 for aluminum alloy and oc = 2.5 for steel) are the

values needed to correlate stress-ratio data on these materials using AKeff. Simulations were

made over a wide range in stress ratio (R = -1 to 0.8). Figure 4 shows the elastic modulus (E)

times the effective cyclic crack-tip displacement (A_Seff)plotted against the predicted crack-

growth rate from AKeff. The results are remarkably linear over several orders of magnitude in

rates with the slope on the aluminum alloy being 2 and the steel being unity. These results are

reasonable because the crack-tip displacement is related to the square of the stress-intensity

factor for small-scale yielding. But these results do show a slight spread in the results for various

R ratios. The aluminum alloy would correlate within +__20percent on rates whereas the steel

would correlate within +_.5percent on rates. Part of this discrepancy may be due to neglecting

the elastic contribution to the cyclic crack-tip displacement, in that, the high R ratio simulations

would have had a slightly higher elastic displacement than the low R ratio results. (Rigid plastic

7



elements are used in the strip-yield model.) But, these results show that the traditional AKeff and

the effective cyclic crack-tip displacements are essentially eatuivalent concepts in the Paris crack-

growth regime.
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Figure 4. Calculated elastic modulus times effective cyclic crack-tip displacement against

crack-growth rate for an aluminum alloy and s_cel for various stress ratios.

REMOTE CMOD EVALUATIONS OF CRACK-'lIP OPENING STRESSES AND

EFFECTIVE STRESS-INTENSITY F_,CTOR RANGES

The ability to measure the true crack-opening load h_ts been a very difficult task.

Nonlinearities in displacement or strain measurement systeras and electronic noise have

contributed to this problem. In addition, the crack-closure process is three dimensional in nature

with more closure occurring at and near the free surface tluan in the interior [20]. On the

otherhand, the two-dimensional strip-yield or finite-element models have a unique crack-opening

load. Thus, the 2D models may be used to study the vafiot s methods of determining the crack-

opening loads and crack-tip parameters. But the 3D analyses are ultimately needed to assess the
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bestmethodto experimentallydeterminethemostappropriateopeningloadto useindefiningan

effectivecrack-frontparameterto characterizefatigue-crackgrowth(seeRiddelletal. [21]).

In thefollowing,thestrip-yieldmodelwill beusedto evaluatecurrentandnewly

developedmethodsto determineeithercrack-openingloadsor theeffectivestress-intensity

factorranges.Remotecrack-mouth-openingdisplacementswillbeusedto determinethecrack-

tipopeningloadsfromreducedCMOD[22]andcompliance-offset(ASTME-647-95a)

methods,andanalternativeAKefffromtheadjusted-compliance-ratiomethod[7] under

constant-arnpfitudeloading.Comparisonbetweenmeasuredandcomputedcrack-openingloads

will bemadeunderasingle-spikeoverloadcondition.

Constant-Amplitude Loading

Reduced CMOD Method -- Crack-growth analyses were performed on a 2024-T3

aluminum alloy M(T) specimen under nearly plane-stress conditions (o_ = 1.2) for constant-

amplitude loading (R = 0). The CMOD traces from loading and unloading for three different

crack lengths are shown in Figure 5. The solid symbols are the calculated crack-opening stresses

So determined from the contact stresses at minimum load. The So values were essentially

independent of crack length. These results illustrate why it is very difficult to determine the

opening load from the very linear applied stress against CMOD records. Because there are

global elastic deformations below the opening load for measurement method away from the

crack tip, it is apparent why some researchers [6] have assumed that there is additional crack-tip

deformations below the opening load.

As Elber [22] had pointed out many years ago, the reduced displacement technique is

require to extract the crack-opening load from the nearly linear CMOD record. The applied

stress against reduced CMOD are shown in Figure 6 for the largest crack length considered.

The true opening load is obtained from the loading record when the loading curve becomes

vertical. Again, the solid symbol is the opening load computed from the contact stresses at the

minimum load. Here the computed opening load is slightly lower than the true opening load.

9
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Thecrack-openingloaddeterminedfromthereducedCMODmethod from the 2D crack-

growth simulations is independent of measurement location. Crack-opening loads determined

from various local and remote measurement locations produced the same crack-opening loads.

Thus numerically, the crack-opening load can be determined from any measurement location in a

cracked body. However, from a testing standpoint, the amplification of the reduced CMOD

record may be such that experimental noise may prevent reliable determination of the true

opening load.

CMOD Compliance Offset Method -- Figure 7 shows the CMOD compliance offset

record for the largest crack length considered in the previous example. The 1 and 2 percent

offset values, commonly used in practice, produce crack-opening values that are considerably

lower than the true opening stress. It is apparent from these calculations why the offset method

is not able to correlate fatigue-crack-growth-rate data [7]. In addition, crack-opening loads from

the 1 or 2 percent offset method have also been shown to be dependent upon the measurement

location [7].
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Adjusted Compliance Ratio Method -- Recently, a new method to determine an effective

stress-intensity factor range has been introduced to help overcome some of the difficulties with

the compliance offset method. This method is called the Adjusted Compliance Ratio (ACR)

method [23]. The ACR = UACR = (Cs - Ci)/(Co - Ci) where Cs is the secant compliance (from

minimum to maximum load), Co is the compliance above the opening load, and Ci is the

compliance prior to initiation of a crack. Ci is assumed to be the compliance of the initial sawcut

or notch in the specimen. The effective stress-intensity factor range is defined as AKeff = UACR

AK. To compare ZhKeff from ACR and the traditional crack-opening concept, a crack-growth

simulation was performed on a M(T) specimen made of 2024-T3 aluminum alloy under nearly

plane-stress conditions at Smax = 120 MPa at R = 0. The specimen had an initial crack length (or

sawcut) of 6.4 mm and a total width (W) of 76 mm. Figure 8 shows the U values plotted against

crack length from ACR (UACR, dashed curve) and from crack-opening theory (solid curve)

where Uop = (Kmax - Ko)/(Kmax - Kmin). At crack length A, the U values are nearly equal and the

rate is 1.1E-6 m/cycle based on equation (2). This is the reference point, since the U values and

rates are equal. At crack length B, based on crack-opening theory, the rate reaches a minimum

of 4.5E-7 m/cycle, and at crack length C the rate is 8E-7 m/cycle (rate is still less than that at

point A). These changes in rate are consistent with experimental measurements made on 2024

aluminum alloy for a crack initiating at a sawcut or notch, see Broek [24]. However, the ACR

method predicts that the rates at point B and C are greater taan that at point A, since AKAcR and

Kmax values are greater at point B and C than at point A. Taus, the ACR method currently

cannot explain the crack-growth transients for a crack initiating at a sawcut or notch. Whether

the ACR method gives a more fundamental effective stress-intensity factor range than the

traditional crack-closure concept must await further evaluations.

Single-Spike Overload

Wu and Schijve [25] have measured crack-opening stresses under single-spike overloads

and underloads using the reduced CMOD method. The crack-closure model was used to

simulate crack growth under these conditions [26]. The predicted crack-growth

12
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Figure 8. Calculated effective stress-intensity factors under constant-amplitude loading

using traditional and adjusted compliance ratio methods.

delays due to overloads and underloads were in good agreement with the experimental

measurements. Figure 9 shows the remote CMOD record for the spike overload simulation at

some point after the application of the overload. The test was conducted at a constant-

amplitude loading with Smax = 100 MPa at R = 0 and a factor of two overload was applied when

the crack reached 6 mm. The solid curve shows the calculated loading and unloading curves.

The dashed line is the slope of the loading curve above the calculated crack-opening load (solid

symbol). The range of measured crack-opening stresses are as indicated by the arrows. This

range was lower than the calculated value but significantly above the value measured under

constant-amplitude loading (about 40 MPa).

A comparison of calculated reduced CMOD for the constant-amplitude (dashed curve)

and single-spike overload (solid curve) is shown in Figure 10. The solid symbol and arrow

shows the crack-opening stress for constant-amplitude and spike overload, respectively. These

results demonstrate why it may be easier to measure the opening loads under spike
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overloads because a large compliance change occurs when the crack surface separate following

the spike overload.

EFFECTS OF Kmax ON CRACK GROWTH IN ALUMINUM ALLOYS

In the last few years, the study of Kmax effects on crack-growth rates has intensified [4,7-

9]. However, the study of these effects are not new, see Paris and Erdogan [27]. From the early

1960's, many researchers had seen these effects and they referred to them as Kmax or stress-level

effects. Numerous equations have been proposed to account for these effects on crack-growth

rates, even in the presence of crack closure. But why are researchers seeing more Kmax effects?

First, specimen sizes that are being used in the laboratory are becoming smaller, tests are being

conducted at very high R ratios (greater than 0.7), and Krnax values are approaching the elastic

fracture toughness of the cracked specimen and material.

Herein, the Kmax effect will be studied on two sets of data on 2024 aluminum alloy. The

first dataset is a recent study [9] on small, extended compact, EC(T), specimens (w = 76 mm)

tested at low AK values but over a very wide range in stress ratios. The second dataset [28] was

conducted on large M(T) specimens (W = 305 mm) at low and high R ratios but at extremely

high stress levels (0.6 to 0.75 t_ys).

The effective stress-intensity factor range against crack-growth rate data for the 2024-T3

aluminum alloy used in these two studies [9,28] is shown in Figure 11. These data were

obtained from Hudson [29] and Phillips [30] over a wide range in stress ratio (symbols). An

assessment of these data indicated that there were no Kmax effects in these data because of the

low R ratios tested and that Kmax was less than 0.3 of the elastic fracture toughness for these

tests. The solid curve is the baseline curve used in the subsequent analyses and the dashed

curves show the scatter (+40 percent) that is typical of these type of data correlation. The data

has been shown only over three orders of magnitude in rates because this covers the rate range

measured by Riddell and Piascik [9] in their constant-AK tests. In the crack-growth analyses,

equation (2) was used to model crack growth. Because transitions or slope changes occur in the

data (such as the rate data below 1E-8 m/cycle), the coefficient C and power n are a function of

rate range. Because large-crack thresholds are not relevant to the subsequent

15
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Figure 11. Effective stress-intensity factor range against crack-growth rate

for a thin-sheet aluminum alloy for a wide range in stress ratios.

calculations and the subject is beyond the scope of the present paper, G = 1 in equation (2). The

function, H = 1 - (Kmax/Cs) q, accounts for the rapid crack-growth rates observed as Kmax

approaches the elastic fracture toughness. The parameter C5 is the cyclic elastic fracture

toughness, like Kc. But before the crack-growth analyses are made, methodology to predict

the elastic fracture toughness, as a function of crack length and width, need to be

considered.

The elastic fracture toughness (KIe) for compact C(T) specimens made of the 2024-

T3 material is shown in Figure 12. KIe is calculated from the initial crack length (before

stable tearing) and the maximum failure load. (This is consistent with the way Kmax is

calculated in current fatigue-crack-growth analyses.) The solid symbols are test data on

C(T) specimens for various specimen widths (w). The solid curve is the Two-Parameter
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FractureCriterion(TPFC) [31] witha valueof KFandm chosento fit thesedata. The

TPFCequationis

KF= KIe/ [1 - m (Sn/Su) ] for S n < 13ys (3)

where KF and m are the two fracture parameters, Sn is the nominal stress, and Su is the

nominal stress at the plastic-hinge condition using the ultimate tensile strength (Cu). The

upper dotted curve is the values of KIe at the plastic-hinge condition using the yield stress

(nominal stress Sn calculated at the crack tip is 1.61 (Yys under these conditions). The

dashed curve is the condition when the nominal stress is equal to the yield stress. The open

symbol shows the estimated elastic fracture toughness for a small extended compact

specimen (w = 38.1 mm at ci/w = 0.4). This value, Kle = Kc = C5 = 50 MPa_/m, will be

used in the crack-growth analyses. For a given specimen width (w = 38.1 ram), the elastic

fracture toughness is a function of crack length, as shown in Figure 13, for the extended

compact specimen. The K solution for the extended compact specimen was obtained from
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Figure 12. Elastic fracture toughness as a function of specimen width

for compact specimens.
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PiascikandNewman[32]. Herethevalueof KFandm from thecompactspecimenswere

usedin theTPFCanalysisto predictcracklengtheffectsfor theextendedcompact

specimen.Thearrowalongthec/w axisshowstherangeof testingin reference9, andthe

solidsymbolis theestimatedelasticfracturetoughnessusedin thecrack-growthanalyses.

TheseresultsshowthatKmaxeffectsmayintensifyfor la'gercrack lengthsbecausethe

elasticfracturetoughnessdropssharply.

60

50

40

Kle
MPa_m 30

20

10

Extended Compact
2024-T3

B = 2.3 mm

  timate°t i mm
-- TPFC

KF = 200 MPa_/m

m = 1

\
Range of Kmax test ing

0 I I I I I

0.0 0.2 0.4 0.6 0.8 1.0

Crack Length / Wi,'lth, c / w

Figure 13. Calculated elastic fracture toughness for extended compact tension specimens.

Riddell and Piascik [9] tested small extended compact specimens under constant-AK

values for a very wide range in stress ratios. Some typical results at 5.5 MPa_Jm are shown

in Figure 14 as the solid symbols. The upper axis shows the ratio of Kmax/Kc for these test

data. The solid curve is the predict results from equation (2) where the power on the

Kmax/C5 ratio was q = 2. The power of q = 2 had been previously selected for aluminum

alloys [15]. The dotted lines show the +40 percent scatterband about the solid curve. All

18



of thetestdata fall within the scatterband. For comparison, the dashed curve shows the

calculated results using only AKeff without the Kmax term.
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Figure 14. Comparison of measured and calculated crack-growth rates at constant AK value.

Figure 15 shows how different values of the power q affect the predicted crack-growth

rates. When q = oo, the Kmax term is eliminated, but when q = 1, rates are affected at all stress

ratios. Because of the scatter in the test data, a q value of 1.5 to 2 seems to fit the data

reasonably well. Constant-AK test results at lower and higher AK values are shown in Figure 16

with the predicted results from equation (2) with and without the Kmax term. Comparisons

between test data and predict resuks (solid curves) are reasonable.

Dubensky [28] tested M(T) specimens (W = 305 mm) over a wide range in stress ratios

(R = 0 to 0.7) and at extremely high values of applied stress (0.6 C_ysto oys). For clarity, only

some of his data (symbols) are shown in Figure 17 as AK plotted against measured rate. The
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open symbols are high R ratio data (non-closure conditions from the analysis) and the solid

symbols are low R ratio data. The dotted curve is the AKeff baseline curve, an extension of the

baseline curve from Figure 11, developed from data by Hudson [29] and Phillips [30]. Below a

rate of 1E-7 m/cycle, plane-strain conditions prevail (or = 2) and for rates greater than 2.5E-6

m/cycle, plane-stress conditions prevail (or = 1). (See reference 33 for further information about

constraint variations for this material.) The solid and dashed curves are the predicted AK against

rate results from FASTRAN for the specimens tested at low and high R ratios. These results

show that Kmax or stress-level effects are present even at low stress ratios, if the tests are

conducted at high applied stress levels, because the test data and predicted curve are not parallel

to the baseline curve (dotted curve). Note that these tests were cycled to failure and that the

cyclic fracture toughness KF (chosen to fit the asymptotes) is considerably higher than the static

value (KF = 267 MPa4m) reported in reference 31.
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Figure l 7. Measured and calculated crack-growth rates for high stress levels at low

and high stress ratios on an aluminum alloy.
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In effortsto determinetheappropriatecrack-drivingparameters,Vasudevanand

Sadananda[4,5]andDonaldet al. [7,23]areplottingAK againstKmaxatconstantcrack-growth

rates,asshowninFigure18. Thesedata(symbols)wereobtainedfromDonald[23]on2024-

T351 aluminum alloy compact specimens tested at a very high humidity. These tests were

conducted under the AK-reduction procedure (ASTM E-647-95a) which may induce other

forms of closure, such as roughness or oxide-debris, in addilion to plasticity from load-history

effects. This crack-growth rate (5.2E-9 m/cycle) is slightly above the threshold region for this

alloy. The effective stress-intensity factor range against rate baseline curve for this material and

humidity were obtained from the R = 0.7 results (AK = AKeff). The curves are calculated from

the plasticity-induced crack-closure model for various values of constraint. Plane-strain

conditions, such as 0_= 2, are expected to prevail at the low crack-growth rate but lower values

of ot are required to fit the test data. These results illustrate a deficiency with the current

plasticity model, in that, other forms of closure such as fretting-oxide-debris- and roughness-

induced closure are not accounted for in the model. At pre_nt,
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a higher value of cz is required to account for these additional sources of closure. Further study

is needed in the threshold regime to develop a model which includes the three major forms of

closure.

CONCLUSIONS

(1) For small-scale yielding conditions, the AKeff crack-growth rate relation is directly

related to the effective cyclic crack-tip-opening displacement (A_eff) over a wide range of

stress ratios (-1 to 0.8) for a aluminum alloy and steel.

(2) Based on the cyclic crack-tip hysteresis energy and the plasticity-induced crack-closure

model, the crack-tip damage for applied stresses less than the "crack-opening" stress is

negligible (less than 5 percent affect on crack-growth rates) for the Pads crack-growth

regime.

(3) The compliance offset method (for 1 to 2% offset) measures significantly lower crack-

opening stresses than physically occur in the crack-closure model.

(4) The effective stress-intensity factor range calculated from the crack-closure model for

the adjusted compliance ratio method produces crack-growth rate trends opposite from

those calculated from the traditional method for a crack initiating from a sawcut or notch.

(5) Effects of Kmax on crack-growth rates can become significant when the specimen size

becomes small (elastic fracture toughness becomes small), as stress ratios approach unity,

and as the Kmax/Kc ratio becomes greater than about 0.5.
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